人工智能 – 明報健康網 - 必威进入 //www.afterroberto.com 明報健康網 Mon, 09 Dec 2019 09:28:53 +0000 en-US hourly 1 https://wordpress.org/?v=6.6.2 //www.afterroberto.com/wp-content/uploads/2023/08/cropped-homelogo-1-32x32.png 人工智能 – 明報健康網 - 必威进入 //www.afterroberto.com 32 32 【了解肺癌】中大AI讀CT圖 30秒辨早期肺癌 準確率逾九成 冀兩年後港醫院應用 //www.afterroberto.com/%e4%b8%ad%e5%a4%a7ai%e8%ae%80ct%e5%9c%96-30%e7%a7%92%e8%be%a8%e6%97%a9%e6%9c%9f%e8%82%ba%e7%99%8c-%e6%ba%96%e7%a2%ba%e7%8e%87%e9%80%be%e4%b9%9d%e6%88%90-%e5%86%80%e5%85%a9%e5%b9%b4%e5%be%8c%e6%b8%af/ Thu, 07 Sep 2017 03:10:51 +0000 //www.afterroberto.com/?p=9494 【明報專訊】香港中文大學工程學院開發以人工智能(AI)深度學習系統,判讀電腦斷層掃描(CT)及病理組織切片等醫學影像,並針對肺癌及乳腺癌的影像做研究,結果發現利用人工智能判讀此兩種癌症的醫學影像,準確率分別達91%及99%,識別過程只需30秒至10分鐘,較傳統肉眼診斷省時。團隊指研發結果獲得醫學界正面回應,期望產品兩年後可應用於本港醫院。

深度學習系統似AlphaGo

中大計算機科學與工程學系教授王平安解釋,智能深度學習(Deep Learning)系統是指電腦模仿人類大腦,將所蒐集的數據,再根據操作員或醫生的指示和講解,將數據分析,從而按操作員的修改等動作再自行學習,改善程式內容,原理類似智能下棋程式AlphaGo,會自行依數據思考及分析。

【了解肺癌】中大AI讀CT圖 30秒辨早期肺癌 準確率逾九成 冀兩年後港醫院應用
中大計算機科學與工程學教授王平安(左)與博士研究生竇琪(右)的團隊,5年前開始研究將人工智能深度學習(Deep Learning)應用於醫學影像檢測,發現有效提升診斷肺癌及乳腺癌效率,測試效果已取得醫學界正面回應,期望兩年後本港醫院可使用。(馮凱鍵攝)

每次數百張CT圖 肉眼讀費時費神

王平安指,早期肺癌多以肺小結節的形式出現,即肺部出現陰影,現時醫生主要透過胸腔CT圖像做檢查,但每次檢查都會產生數百張圖像,需花長時間用肉眼逐張觀察,非常費神。其團隊採用深度學習技術判讀CT掃描影像,結果發現只需30秒,便可自動識別出肺部陰影位置,準確度達91%,而肉眼檢查約需5分鐘。

【了解肺癌】中大AI讀CT圖 30秒辨早期肺癌 準確率逾九成 冀兩年後港醫院應用
中大工程學院開發人工智能深度學習閱讀CT圖像,微小至肉眼難以見到的地方,智能技術也可以偵測到;如圖中在肺部上的白點雖然不太明顯,但智能技術可偵測出有可疑,並以0.992代表該位置屬腫瘤的機率。(受訪者提供)

王平安表示,一般乳腺癌要通過乳房X光造影或MR掃瞄檢測硬塊位置,醫生需切取活組織樣本,再用顯微鏡拍攝圖像,檢測淋巴結轉移,但每幅圖解像度極高,令檢測過程費時費力。團隊為此開發了一種新的深層疊卷積神經網絡,分階段處理乳腺癌切片圖像,先作較粗略但能保持高靈敏度的快速預測模型,重構出更精密而準確的預測結果,最後定位並挑選含淋巴結轉移的圖像。整個過程只需約5至10分鐘,準確度達98.75%,而靠肉眼則需15至30分鐘,準確度亦較前者低約兩個百分點。

【了解肺癌】中大AI讀CT圖 30秒辨早期肺癌 準確率逾九成 冀兩年後港醫院應用
中大團隊發現,採用深度學習技術判讀CT掃描圖像,僅需30秒就能自動識別出可能出現肺小結節(早期肺癌徵兆)的位置,準確度達九成,當中的P代表其概率值,以0至1代表,若P等於1,即代表該位置懷疑是腫瘤的機率極高。(受訪者提供)

與3北京醫院合作開發產品

中大計算機科學與工程學系博士研究生竇琪稱,智能深度學習可協助醫生觀看掃描圖像,當發現可疑圖像時,系統便會通知醫生。團隊5年前展開相關實驗,年花約300萬元,並多次就有關實驗參與國際學術比賽。今次肺癌和乳腺癌的研發數據來自多個國家、共逾3500名病人,研發結果亦在國際學術比賽中名列前茅,獲醫學界正面回應,現聯同3間北京的醫院合作開發相關產品,為癌症早期診斷和治療提供可靠數據,亦開始與本港公立醫院洽商,期望兩年後技術可在本港醫院應用。

]]>